函数源码 |
Source File:kernel\irq\affinity.c |
Create Date:2022-07-27 11:16:13 |
首页 | Copyright©Brick |
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | /* * Allocate vector number for each node, so that for each node: * * 1) the allocated number is >= 1 * * 2) the allocated numbver is <= active CPU number of this node * * The actual allocated total vectors may be less than @numvecs when * active total CPU number is less than @numvecs. * * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' * for each node. */ static void alloc_nodes_vectors(unsigned int numvecs, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, const nodemask_t nodemsk, struct cpumask *nmsk, struct node_vectors *node_vectors) { unsigned n, remaining_ncpus = 0; for (n = 0; n < nr_node_ids; n++) { node_vectors[n].id = n; node_vectors[n].ncpus = UINT_MAX; } for_each_node_mask(n, nodemsk) { unsigned ncpus; cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue ; remaining_ncpus += ncpus; node_vectors[n].ncpus = ncpus; } numvecs = min_t(unsigned, remaining_ncpus, numvecs); sort(node_vectors, nr_node_ids, sizeof (node_vectors[0]), ncpus_cmp_func, NULL); /* * Allocate vectors for each node according to the ratio of this * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is * bigger than number of active numa nodes. Always start the * allocation from the node with minimized nr_cpus. * * This way guarantees that each active node gets allocated at * least one vector, and the theory is simple: over-allocation * is only done when this node is assigned by one vector, so * other nodes will be allocated >= 1 vector, since 'numvecs' is * bigger than number of numa nodes. * * One perfect invariant is that number of allocated vectors for * each node is <= CPU count of this node: * * 1) suppose there are two nodes: A and B * ncpu(X) is CPU count of node X * vecs(X) is the vector count allocated to node X via this * algorithm * * ncpu(A) <= ncpu(B) * ncpu(A) + ncpu(B) = N * vecs(A) + vecs(B) = V * * vecs(A) = max(1, round_down(V * ncpu(A) / N)) * vecs(B) = V - vecs(A) * * both N and V are integer, and 2 <= V <= N, suppose * V = N - delta, and 0 <= delta <= N - 2 * * 2) obviously vecs(A) <= ncpu(A) because: * * if vecs(A) is 1, then vecs(A) <= ncpu(A) given * ncpu(A) >= 1 * * otherwise, * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N * * 3) prove how vecs(B) <= ncpu(B): * * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be * over-allocated, so vecs(B) <= ncpu(B), * * otherwise: * * vecs(A) = * round_down(V * ncpu(A) / N) = * round_down((N - delta) * ncpu(A) / N) = * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= * round_down((N * ncpu(A) - delta * N) / N) = * cpu(A) - delta * * then: * * vecs(A) - V >= ncpu(A) - delta - V * => * V - vecs(A) <= V + delta - ncpu(A) * => * vecs(B) <= N - ncpu(A) * => * vecs(B) <= cpu(B) * * For nodes >= 3, it can be thought as one node and another big * node given that is exactly what this algorithm is implemented, * and we always re-calculate 'remaining_ncpus' & 'numvecs', and * finally for each node X: vecs(X) <= ncpu(X). * */ for (n = 0; n < nr_node_ids; n++) { unsigned nvectors, ncpus; if (node_vectors[n].ncpus == UINT_MAX) continue ; WARN_ON_ONCE(numvecs == 0); ncpus = node_vectors[n].ncpus; nvectors = max_t(unsigned, 1, numvecs * ncpus / remaining_ncpus); WARN_ON_ONCE(nvectors > ncpus); node_vectors[n].nvectors = nvectors; remaining_ncpus -= ncpus; numvecs -= nvectors; } } |